Senior MLOps / AIOps Platform Engineer - MLflow, GCP, Vertex AI, IBM Watsonx, Terraform
UPS
**Avant de postuler à un emploi, sélectionnez votre langue de préférence parmi les options disponibles en haut à droite de cette page.**
Découvrez votre prochaine opportunité au sein d'une organisation qui compte parmi les 500 plus importantes entreprises mondiales. Envisagez des opportunités innovantes, découvrez notre culture enrichissante et travaillez avec des équipes talentueuses qui vous poussent à vous développer chaque jour. Nous savons ce qu’il faut faire pour diriger UPS vers l'avenir : des personnes passionnées dotées d’une combinaison unique de compétences. Si vous avez les qualités, de la motivation, de l'autonomie ou le leadership pour diriger des équipes, il existe des postes adaptés à vos aspirations et à vos compétences d'aujourd'hui et de demain.
**Fiche de poste :**
Job Summary
We are seeking a Senior MLOps / AIOps Platform Engineer with deep DevSecOps expertise and hands-on experience managing enterprise-grade AI/ML platforms. This critical role focuses on building, configuring, and operationalizing secure, scalable, and reusable infrastructure and pipelines that support AI and ML initiatives across the enterprise. The ideal candidate will have a strong background in Infrastructure as Code (IaC), pipeline automation, and platform engineering, with specific experience configuring and maintaining IBM watsonx and Google Cloud Vertex AI environments.
**Key Responsibilities**
Platform Engineering & Operations
+ Lead the provisioning, configuration, and ongoing support of **IBM watsonx** and **Google Cloud Vertex AI** platforms.
+ Ensure platforms are **production-ready, secure, cost-efficient, and performant** across training, inference, and orchestration workflows.
+ Manage lifecycle tasks such as patching, upgrades, integrations, and service reliability.
+ Partner with security, compliance, and product teams to align platforms with enterprise and regulatory standards.
Enterprise MLOps / AIOps Enablement
+ Define and implement **standardized MLOps/AIOps practices** across business units for consistency and scalability.
+ Build and maintain **reusable workflows** for model development, deployment, retraining, and monitoring.
+ Provide **onboarding, enablement, and support** to AI/ML teams adopting enterprise platforms and tools.
+ Support **development/deployment of GenAI** applications and maintain them at an Enterprise scale.
DevSecOps Integration
+ Embed **security and compliance guardrails** across the ML lifecycle, including CI/CD pipelines and IaC templates.
+ Implement **policy-as-code, access controls, vulnerability scanning, and automated compliance checks** .
+ Ensure all deployments meet **enterprise and regulatory requirements** (HIPAA, SOX, FedRAMP, etc.).
Infrastructure as Code & Automation
+ Design and maintain **IaC templates** (Terraform, Pulumi, Ansible, CloudFormation) for reproducible ML infrastructure.
+ Build and optimize **CI/CD pipelines** for AI/ML assets including data pipelines, training workflows, deployment artifacts, and monitoring systems.
+ Enforce best practices around **automation, reusability, and observability** of infrastructure and workflows.
Monitoring, Logging & Observability
+ Implement **comprehensive observability** for AI/ML workloads using Prometheus, Grafana, Stackdriver, or Datadog.
+ Monitor both **infrastructure health** (CPU, memory, cost) and **ML-specific metrics** (model drift, data integrity, anomaly detection).
+ Define KPIs and usage metrics to measure **platform performance, adoption, and operational health** .
**Qualifications**
Education
+ Bachelor’s or Master’s degree in Computer Science, Engineering, or a related technical field.
Experience
+ 5+ years in **MLOps, DevOps, Platform Engineering, or Infrastructure Engineering** .
+ 2+ years applying **DevSecOps practices** (secure CI/CD, vulnerability management, policy enforcement).
+ Hands-on experience configuring and managing **enterprise AI/ML platforms (IBM watsonx, Google Vertex AI)** .
+ Demonstrated success in building and scaling **ML infrastructure, automation pipelines, and platform support models** .
Technical Skills
+ Proficiency with **IaC tools** (Terraform, Pulumi, Ansible, CloudFormation).
+ Strong scripting skills in **Python and Bash** .
+ Deep understanding of **containerization and orchestration** (Docker, Kubernetes).
+ Experience with **model lifecycle tools** (MLflow, TFX, Vertex Pipelines, or equivalents).
+ Familiarity with **secrets management, policy-as-code, access control** , and monitoring tools.
+ Working knowledge of **data engineering concepts** and their integration into ML pipelines.
Preferred
+ **Cloud certifications** (e.g., GCP Professional ML Engineer, AWS DevOps Engineer, IBM Cloud AI Engineer).
+ Experience supporting platforms in **regulated industries** (HIPAA, FedRAMP, SOX, PCI-DSS).
+ Contributions to **open-source projects** in MLOps, automation, or DevSecOps.
+ Familiarity with **responsible AI practices** including governance, fairness, interpretability, and explainability.
+ Hands-on experience with **enterprise feature stores, model monitoring frameworks, and fairness toolkits** .
**Type de contrat:**
en CDI
_Chez UPS, égalité des chances, traitement équitable et environnement de travail inclusif sont des valeurs clefs auxquelles nous sommes attachés._
Confirmar seu email: Enviar Email
Todos os Empregos de UPS